Speed gradients and the perception of surface slant: Analysis is two-dimensional not one-dimensional

نویسندگان

  • Tim S. Meese
  • Mike G. Harris
  • Tom C.A. Freeman
چکیده

Motion parallax provides cues to the three-dimensional layout of a viewed scene and, in particular, to surface tilt and slant. For example, as a textured surface, inclined around a horizontal axis, translates horizontally relative to an observer's view point, then, in the absence of head and eye movements, the observer's retinal flow will contain a one-dimensional (1D) vertical speed gradient. The direction of this gradient indicates the direction of surface tilt, and its magnitude and sign can be used in calculating the magnitude and sign of the surface slant. Alternatively, the same retinal flow contains a 1D translating component, plus a two-dimensional (2D) component of rotation (curl), and a 2D component of deformation (def). On this view, the direction of surface tilt is related to the orientation of def and the magnitude and sign of the surface slant is related to the magnitude and sign of def. We used computer generated random dot patterns as stimuli to determine whether the human visual system employs a 1D analysis (i.e. 1D speed gradients) or a 2D analysis (i.e. deformation) of surface slant from motion parallax. Using a matching technique we found compelling impressions of slant when we vector summed a translation field with (i) vertical shear, horizontal shear or deformation (made from vertical and horizontal shear), but not rotation; and (ii) vertical compression, horizontal compression or deformation (made from vertical and horizontal compression), but much less so for expansion. In both cases, the first three conditions contain def, but the fourth does not, and the last three conditions contain 1D speed gradients orthogonal to the perceived axis of inclination, but the first one does not. Therefore, the results from the first and fourth conditions distinguish between the two processing strategies. They support the idea that surface slant is coded by combining both horizontal and vertical speed gradients in a way similar to the 2D differential invariant def and oppose the view that surface slant is encoded by a 1D analysis of motion in a direction orthogonal to the perceived axis of inclination. In a further experiment, we found essentially no effect of reducing the field size from 18 to 9 deg.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elasto-Thermodiffusive Response in a Two-Dimensional Transversely Isotropic Medium

The present article investigates the elasto-thermodiffusive interactions in a transversely isotropic elastic medium in the context of thermoelasticity with one relaxation time parameter and two relation time parameters. The resulting non-dimensional coupled equations are applied to a specific problem of a half-space in which the surface is free of tractions and is subjected to time-dependent th...

متن کامل

Computation of surface slant from optic flow: Orthogonal components of speed gradient can be combined

In previous work [Meese et al. (1995). Vision Research, 35, 2879-2888)] we showed that one-dimensional (1D) speed gradients are sufficient to produce a compelling impression of surface slant. Summing a 1D vertical shearing gradient or, less intuitively, a 1D horizontal shearing gradient with a random field of horizontally translating dots produces perceived slant about a horizontal axis. Simila...

متن کامل

Retinal speed gradients and the perception of surface slant.

Previous work has demonstrated a difference in human sensitivity to compressive and shearing speed gradients. This raises the possibility that the ability to estimate the slant of a surface may vary with its direction of tilt. No such variance was found here, which may indicate that slant estimation depends upon deformation rather than upon compression or shear.

متن کامل

Efficient Analysis of Plasmonic circuits using Differential Global Surface Impedance (DGSI) Model

Differential global surface impedance (DGSI) model, a rigorous approach, has been applied to the analysis of three dimensional plasmonic circuits. This model gives a global relation between the tangential electric field and the equivalent surface electric current on the boundary of an object. This approach helps one bring the unknowns to the boundary surface of an object and so avoid volumetric...

متن کامل

Disparity-based coding of three-dimensional surface orientation by macaque middle temporal neurons.

Gradients of binocular disparity across the visual field provide a potent cue to the three-dimensional (3-D) orientation of surfaces in a scene. Neurons selective for 3-D surface orientation defined by disparity gradients have recently been described in parietal cortex, but little is known about where and how this selectivity arises within the visual pathways. Because the middle temporal area (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Vision Research

دوره 35  شماره 

صفحات  -

تاریخ انتشار 1995